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Supplementary Notes

Relationship Between Slots, Resources, and SD

The slots+averaging model supposes that observers may store multiple

independent samples of a colour in separate slots, reporting the average of the stored

colour values at the time of the memory probe. The SD of the average of N samples is

well known to be equal to the SD of the individual samples divided by sqrt(N)
1
. This

fact was used to make quantitative predictions from the slots+averaging model.

Resource models are analogous to slot models with an infinite number of slots.

Consequently, quantitative resource models also lead to a square-root relationship

between the quantity of resources devoted to a representation and the SD of that

representation
1,2
. The essential difference between slot and resource models is the

granularity of the resource, which is infinitely divisible in resource models but is

organized into a few large chunks in slot models.

Adequacy of Parameter Estimations

As evidence that our mixture model with three parameters provides an adequate

description of the data, we computed the adjusted r
2
statistic (which reflects the

proportion of variance explained by the model) and the �2 statistic on the basis of

histograms of the data with 15 bins, each 24° wide. The Kolmogorov-Smirnov (K-S)

statistic was also computed to test whether the observed data differ significantly from

the model. These statistics were computed for each individual subject and also for the

data aggregated over subjects. It is more difficult to obtain a good fit when Pm is low

and when a given condition has relatively few trials per subject, and the group data sets

were particularly useful for demonstrating goodness of fit under these conditions. We

also conducted 1000 Monte Carlo simulations of the data that would be expected for
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individual observers in each condition to determine how the adjusted r
2
values would be

expected to vary given the number of trials and the observed Pm values.

Supplementary Table 1 shows the adjusted r
2
values for each major experiment

described in the main text, including the values computed from the group data, the mean

of the single-subject data, and the mean of the simulated single-subject data. In the

single-subject data, the worst fits explained an average of over 75% of the variance, and

the best fits explained an average of over 95% of the variance. The variations in

goodness of fit corresponded well with variations observed in the simulations,

indicating that the variations in goodness of fit are a consequence of variations in the

number of trials and Pm levels rather than reflecting systematic deviations of the data

from the model. For example, although the observed adjusted r
2
values fell from

approximately 0.95 at set sizes 1–3 to approximately 0.87 at set size 6, a similar drop

was observed in the simulations, presumably because of an increase in the proportion of

trials on which subjects did not recall the probed colour and therefore responded

randomly. Thus, the reduction in goodness of fit was an inevitable consequence of the

nature of the underlying memory representations in the context of a finite data set. In

addition, the model explained over 95% of the variance in all conditions when the data

were aggregated across the group of subjects. Moreover, the K-S and �2 analyses

indicated that the observed data were not significantly different from the model in any

subject or group of subjects for any condition. Thus, this simple 3-parameter model

provides an excellent quantitative fit to the data across all conditions of all experiments.

For Experiments 1 and 2, we also tested the adequacy of a simple resource model

containing only a von Mises distribution, which is equivalent to holding Pm constant at

1.0 when estimating the � and SD parameters. The adjusted r
2
values were negative for

all set sizes in both experiments, with the exception of set size 1 in Experiment 2. A

negative value means that the error variance is larger than what would be obtained by a
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model in which the mean of the sample was the only parameter, and it indicates that the

model does not adequately fit the data. In addition, the data deviated significantly from

the model according to the K-S and �2 tests for all set sizes in both experiments (p < .05

or better). Thus, the data are quantitatively inconsistent with a model in which all items

are encoded and only the precision of the representations varies as a function of set

size
3
.

Control Experiments

To demonstrate that the effect of set size on Pm did not reflect a lack of sufficient

time to encode the items at set size 6, we conducted a control experiment comparing

sample durations of 100 and 500 ms at set size 6. We found no significant effect of

duration on either SD or Pe (both Fs < 1). To demonstrate that our methods are

sufficiently sensitive to detect changes in SD if they are present, we conducted an

additional control experiment in which the quality of the perceptual representations was

manipulated by adding varying numbers of coloured “noise” dots to a set of 3 coloured

squares (see Supplementary Figure 1). The noise degraded the perceptual

representation of the colours, and this reduced precision was necessarily propagated to

the memory representations. Increasing the noise increased the SD (F(1,7)= 7.78,

p<0.03) but did not influence Pm (F < 1). Thus, our methods are sufficiently sensitive to

detect modest changes in precision.

Colour Categories

Although it is not central to this study, our methods implicitly assume that

observers store a representation of the continuous colour values. However, it is possible

that they instead convert the continuous colour values in the sample array into

categorical representations (e.g., prototypes of red, green, blue, etc.). If this were true,

then much of the distribution of responses would reflect the difference between the
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actual colour of the probed item and the nearest prototypical colour value. To assess

this possibility, we pooled the data from four experiments that included trials with a set

size of one item (the procedure for these trials was identical across experiments),

yielding a total of 50 observers. (Pooling across observers is well justified because

colour categories are highly consistent across individuals from a restricted age range

and cultural group
4
.) We then plotted the distribution of reported colours as a function

of the actual colours for this pool of observers (Supplementary Figure 2a). If observers

represent the actual colour (plus noise), then this should yield a straight line. If

observers instead represent a given sample colour as the nearest colour category value,

then this function should look like a staircase, in which variations in the actual colour

within a given range lead to no change in the reported colour, with a sudden change in

reported colour when the actual colour crosses the category boundary. An example of

this is displayed in Supplementary Figure 2b, which shows the results of a simulation of

categorical memory with 7 colour categories. The results shown in Supplementary

Figure 2a clearly follow a straight line, and a least-squares analysis showed that a

straight line accounts for 97% of the variance in reported colour. There was no sign of

staircase-like horizontal bands in these data. Thus, observers appear to remember the

actual colour rather than the nearest colour prototype.

Comparison of Colour Recall with Colour Change Detection

The colour recall task used in this study differs from the more common change

detection task that has been used widely to study visual working memory in

behavioural
5
, ERP

6
, and neuroimaging

7
studies. To determine whether these two tasks

are measuring the same aspects of working memory, we conducted an experiment

(N=14) in which the two tasks were randomly intermixed. Each trial began with a 100-

ms presentation of a sample array containing three items. This was followed after a

900-ms delay by either a colour recall test display or a change-detection test display.
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The colour recall test display contained a probe and a colour wheel, just as in the other

experiments in the present study, and observers responded by selecting a colour from

the colour wheel. The change detection test display contained a single coloured square

at one of the locations from the sample array, and observers responded by making a

keypress response to indicate whether or not the test square was the same colour as the

corresponding sample square. The test colour was the same on 50% of trials and

differed by 180° in colour space on the other 50%. The colour recall and change

detection trials were unpredictably intermixed, so observers necessarily encoded and

maintained the colour information in the same way on both trial types.

The goal of this experiment was to determine whether the estimated number of

items that observers store in memory (the storage capacity) is the same for the two

tasks. The storage capacity for the colour recall task (Ki) was estimated by simply

multiplying Pm by the set size. The storage capacity for the change detection task was

estimated with the Cowan K equation
8
. This equation is based on a high-threshold

model, but it should be approximately correct for the maximally large (180°) change

magnitudes used in this experiment. As shown in Supplementary Figure 3, the two

measures of storage capacity were strongly and significantly correlated across subjects

(r
2
= .572, p = .002), with a slope near 1.0 and an intercept near 0.0. Although the

agreement between these two procedures may vary depending on the decision

requirements of the specific experiment, these results suggest that they are measuring

fundamentally similar aspects of visual working memory capacity.

Extension to Shape-Defined Stimuli

Experiments 2 and 3 were repeated with shape stimuli (N = 8 and 14,

respectively; see stimuli in Supplementary Figure 4 and results in Supplementary Figure

5). Shape was parameterized using the Fourier descriptor technique9, in which the
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perimeter of an object is described by the sum of a set of sinusoidal components. That

is, a function is created that represents the distance between the centre of the object and

its perimeter as a function of polar angle, and this function is then decomposed into the

sum of a set of sine wave components that vary in frequency, amplitude, and phase.

Using this approach, we synthesized a family of objects consisting of two sinusoidal

components, one with a frequency of 2 cycles per perimeter (cpp) and an amplitude of

0.5 and one with a frequency of 4 cpp and an amplitude of 0.5. The phase of the 2-cpp

component was held constant at 0°, and the phase of the 4-cpp component varied

between 0 and 360° in steps of 2° (providing a circular dimension that is analogous to

the hue dimension used in the colour experiments). The result was a family of 180

moderately complex shapes, each subtending approximately 2° in visual angle, that

varied systematically in shape.

The procedure for the shape stimuli was identical to that used for the colour

stimuli, with three exceptions. First, the exposure duration was increased to 1000 ms to

provide sufficient encoding time. Second, the circle of shapes at the time of response

contained 30 discrete shapes rather than a visually continuous ring of 180 colour values

(see Supplementary Figure 4). These shapes were sampled from the family of 180

shapes, with 12° of phase difference between adjacent shapes and a randomly chosen

starting phase on each trial. Subjects were instructed to indicate the remembered shape

of the probed item by clicking on the corresponding position within the circle of shapes,

interpolating between the exemplars in the circle if necessary to accurately report the

shape (because the actual shape may lie between two of the sample shapes in a given

display). Third, a familiarization block with 60 trials was run before the memory task, in

which six shapes were presented simultaneously with the circle of shapes. One of the

six shapes was cued and subjects matched the cued shape to the corresponding shape on

the circle of shapes. This provided the observers with an opportunity to practice

choosing interpolated locations along the circle of test shapes, and the experimenter
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verified that they did so. The data from the shape experiments were analyzed in exactly

the same manner as the data from the corresponding colour experiments.

Overall Pm values for shape were similar to those obtained for colour. The SD

was somewhat larger for shape than for colour, but there is no reason why the precision

should have the same numeric value across dimensions, especially given that the test

display contained 30 values for shape and 180 values for colour. When the set size was

manipulated as in Experiment 2, Pm fell slightly as the set size increased from 1 to 3 and

then fell dramatically as the set size increased from 3 to 6, producing a significant

overall effect of set size (F(3,21) = 51.76, p < 0.001). SD increased significantly as the

set size increased between 1 and 3 items (F(2,14) = 13.15, p < 0.001) but did not

increase as the set size increased from 3 to 6 items (F < 1). This is the same pattern of

results obtained for colour in Experiment 2, and it was well fit by both the

slots+resources and slots+averaging models but not by the simple resource model.

When a cue in the initial sample array was used to direct attention to a single item,

as in Experiment 3, Pm was high for valid trials, substantially lower on neutral trials, and

very low on invalid trials (F(2,26)=15.23, p<0.001). This demonstrates that the cue was

highly effective in motivating the observers to give priority to the cued shape.

However, cuing produced only a modest difference in SD between valid and neutral

trials (F(1,13)=12.54,p<0.01) and no difference between neutral and invalid trials (F <

1). This pattern is identical to the pattern observed for colour in Experiment 3. The size

of the improvement in SD on valid trials compared to neutral trials was within the range

that would be expected if the observers allocated multiple slots to the cued item on valid

trials and allocated a single slot to each item on neutral trials. Most importantly, the

lack of an increase in SD on invalid trials compared to neutral trials indicates that

focusing attention onto the cued item did not result in reduced precision for the uncued

items. That is, uncued items were relatively unlikely to be stored in memory, but when
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they were stored they were represented with the same precision as on neutral trials.

Thus, it does not seem possible to allocate “only a few drops” of resources to a shape

representation in working memory.
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Supplementary Table 1. Adjusted r2 values indicating the goodness of fit

for the slots+averaging model when applied to the group data, the mean

of the individual data, and the simulated individual data.

Condition Group r
2

Mean

Individual r
2

Simulated

Individual r
2

Set Size 3 0.992 0.965 0.976
Experiment 1

Set Size 6 0.980 0.847 0.870

Set Size 1 0.979 0.973 0.965

Set Size 2 0.995 0.974 0.983

Set Size 3 0.995 0.962 0.975

Experiment 2

Set Size 6 0.959 0.822 0.866

Valid 0.993 0.963 0.972

Neutral 0.986 0.835 0.906Experiment 3

Invalid 0.964 0.767 0.596

110-ms SOA 0.956 0.773 0.861
Experiment 4

340-ms SOA 0.983 0.881 0.949



Supplementary Figure 1. Stimuli (a) and results (b) from a control experiment showing that adding sensory noise

to the sample array increases the estimated standard deviation (SD) but not the estimated probability of memory

(Pm). Error bars show within-subjects 95% confidence intervals.
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Supplementary Figure 2.  a, Frequency of reporting a given colour value as a function of the actual colour value,

aggregated across at least 150 trials for each of 50 observers across four separate experiments at set size 1.

The intensity at a given point in the plot represents the frequency of occurrence for that particular combination of
actual colour and reported colour.  The function is nearly perfectly linear, indicating that the observers stored a

representation of the actual colour (plus noise) rather than storing the nearest colour category.  b, Analogous

results from a Monte Carlo simulation of a memory system in which the actual colour value was stored as the

nearest of seven equally spaced colour categories.  On each trial of the simulation, Gaussian noise was added to

the actual colour value, the nearest categorical value was chosen, and then the categorical colour value was
reported (plus additional Gaussian noise to represent response variability).  The noise levels were chosen to

produce results that matched the overall level of response error exhibited by the observers in a.  Additional

simulations showed that a categorical model could not achieve the low level of response error and the linearity of

the data shown by the observers in a unless the number of colour categories was unrealistically large (~20).
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Supplementary Figure 3. Memory capacity as estimated from the colour recall task (Ki) as a function of memory

capacity as estimated from a change detection task (Cowan’s K).



Supplementary Figure 4.  Example sample array and circle of shapes from the shape experiments.  The contour

of each shape can be described by the sum of two sine waves.  Note that the shapes in the circle were evenly

spaced in phase space, with a starting phase that varied randomly from trial to trial.  The actual sample shapes
were not necessarily among the exemplars shown in the circle, and the observers were instructed to make

interpolated responses when the remembered shape fell between two of the exemplars in the circle.  The

observers were given extensive practice with making interpolated responses during a familiarization phase, in

which the central sample shapes were presented simultaneously with the circle of test shapes.
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Supplementary Figure 5. (a) Pm and (b) SD results from an experiment with shape stimuli in which the set size
varied between values of 1, 2, 3, and 6.  The lines in b show the predictions of the simple resource model, the

slots+averaging model, and the slots+resources model. (c) Pm and (d) SD results from an experiment with shape

stimuli in which a cue was presented in the sample array to indicate which item was most likely to be tested.

Error bars show within-subjects 95% confidence intervals.


